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Abstract. A unified aspect of the self-consistent field (SCF) method and the τ -functional method
is presented. SCF theory in the τ -functional space F∞ manifestly results in a gauge theory of
fermions and then a collective motion appears as a motion of fermion gauges with a common
factor. This provides a new algebraic tool for the microscopic understanding of fermion many-
body systems.

1. Introduction

To go beyond the perturbative method with respect to collective variables [1], we should
have a very strong interest in the algebro-geometric relation between the method truncating a
collective motion out of a fully parametrized self-consistent field (SCF) manifold and the τ -
functional method constructing integrable equations (Hirota’s equations [2]) in soliton theory
[3]. The relation between τ -functions and coherent state representatives was first pointed out
by D’Ariano and Rasetti [4] for an infinite-dimensional harmonic charged Fermi gas. If we
stand by their observation, we may assert that the so-called SCF method [5] has presented a
theoretical scheme for an integrable sub-dynamics on a certain infinite-dimensional fermion
Fock space. Then we are forced to investigate the relation between the collective submanifold
and various subgroup orbits in the fully parametrized SCF manifold.

The usual Hartree–Fock (HF) theory is formulated by a variational method to optimize the
energy expectation value by a Slater determinant (S-det) and to obtain a variational equation
for orbitals in the S-det [5]. The set of particle–hole-type pair operators of the fermions with n
single-particle states is closed under Lie multiplication and forms the basis of the Lie algebra un
[6]. The un Lie algebra of the pair operators generates the Thouless transformation [7] which
induces a representation of the correspondingU(n) group. TheU(n) canonical transformation
transforms an S-det withmparticles to another S-det. Any S-det is obtained by aU(n) canonical
transformation of a given reference S-det (the Thouless theorem). The Thouless transformation
provides an exact generator coordinate representation of the fermion state vectors in which the
generator coordinate is the U(n) group and the generating wavefunction is an independent-
particle one [8]. This is the generalized coherent state representation [9].

∗ A preliminary version of this work was first presented by S Nishiyama at the 6th International Wigner Symposium
held at Bogazici University, Istanbul, Turkey, 16–22 August 1999.
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In soliton theory on a group manifold, the transformation group to cover the solution
for the soliton equation is an infinite-dimensional Lie group whose infinitesimal generator
of the corresponding Lie algebra is expressed as an infinite-order differential operator of
the associative affine Kac–Moody algebra. The space of the complex polynomial algebra
is realized in terms of a Fock space of infinite-dimensional fermions. The infinite-order
differential operator is represented in terms of infinite-dimensional fermions. Then the soliton
equation becomes nothing other than differential equations defining group orbits of the highest-
weight vector in the infinite-dimensional Fock space F∞ [3]. The generating wavefunction,
i.e. the generalized coherent state representation is just the S-det by the Thouless theorem and
provides a key to elucidating the relation between the HF wavefunction and the τ -function
in soliton theory [3]. Up to now, however, the relation between them has been insufficiently
investigated. Both methods have been constructed on the associative Lie algebra generated
by the fermion pair operators but descriptions of dynamical fermion systems by them have
looked very different at first glance. In this paper, first, we present a unified aspect of the SCF
method on the group U(n) and the τ -functional method on the group in the soliton theory,
aiming to get a close connection between the concept of a mean-field potential and the gauge
of fermions inherent in the SCF method and making the role of the loop group [10] relating
them clear. This will give a new algebraic tool for a microscopic understanding of fermion
many-body systems.

In the above abstract fermion Fock spaces, we find common features in both methods, i.e.
the SCF method and the τ -functional method to construct integrable equations for the soliton
as follows.

(a) Each solution space is described as Grassmannian, i.e. a group orbit of the corresponding
vacuum state.

(b) The former may implicitly explain the Plücker relation, not in terms of bilinear differential
equations defining a finite-dimensional Grassmannian, but in terms of the physical concept
of the quasi-particle and vacuum and the mathematical language of coset space and the
coset variable. Various boson expansion methods are built on the Plücker relation to hold
the Grassmannian. The latter asserts that the soliton equations are nothing but the bilinear
differential equations. It gives a boson representation of the Plücker relation. These have
been reported by one of the present authors (SN) at the 6th Int. Wigner Symp. (1999) [11].

On the other hand, we become aware of the following two points of difference between
the methods.

(a) The former is built on a finite-dimensional Lie algebra but the latter on an infinite-
dimensional one.

(b) The former has an SCF Hamiltonian consisting of a fermion one-body operator, which is
derived from a functional derivative of the expectation value of the fermion Hamiltonian
by a ground-state wavefunction. In contrast, the latter introduces artificially a fermion
Hamiltonian of a one-body-type operator as a boson mapping operator from states on
fermion Fock space to corresponding ones on τ -functional space.

Getting over the difference due to the dimension of fermions, we ask the following. How is
a collective submanifold which is truncated through the SCF equation related to a subgroup orbit
in the infinite-dimensional Grassmannian by the τ -functional method? To obtain a microscopic
understanding of cooperative phenomena, the concept of collective motion is introduced in
relation to time-dependent (TD) variation of the self-consistent mean field. Independent-
particle motion is described in terms of particles referring to a stationary mean field. The
TD variation of the TD mean field is attributed to couplings between the collective and the
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independent-particle motions and couplings among quantum fluctuations of the TD mean field
[12]. There is one-to-one correspondence between the mean-field potential and the vacuum
state of the system. Decoupling of collective motion out of fully parametrized TDHF dynamics
corresponds to a truncation of the integrable sub-dynamics from a fully parametrized TDHF
manifold. The collective submanifold is a collection of collective paths developed by the SCF
equation. Collectivity of each path reflects the geometrical attribute of the Grassmannian
independent of the SCF Hamiltonian. Then the collective submanifold should be understood
in relation to the collectivity of various subgroup orbits in the Grassmannian. The collectivity
arises through interference among interacting fermions and links with the concept of a mean-
field potential. The perturbative method has been considered to be useful for describing the
periodic collective motion with large amplitude [1, 12]. If we do not break the group structure
of the Grassmannian in the perturbative method, the loop group may work under that treatment.

Thus we note the following point in both methods: various subgroup orbits consisting of a
loop path may exist infinitely in the fully parametrized TDHF manifold. They must satisfy an
infinite set of Plücker relations to hold the Grassmannian. As a result, the finite-dimensional
Grassmannian on the circle S1 is identified with an infinite-dimensional one. Namely, the
τ -functional method works as an algebraic tool to classify the subgroup orbits. The SCF
Hamiltonian is able to exist in the infinite-dimensional Grassmannian. Then the SCF theory
can be rebuilt on the infinite-dimensional fermion Fock space and hence on the τ -functional
space. The infinite-dimensional fermions are introduced through a Laurent expansion of the
finite-dimensional fermions with respect to degrees of freedom of fermions related to the mean-
field potential. Inversely, the collectivity of the mean-field potential is attributed to gauges of
interacting infinite-dimensional fermions and interference among fermions is elucidated via the
Laurent parameter. These are described with the use of affine Kac–Moody algebra according
to the idea of Dirac’s positron theory [13]. Algebro-geometric structure of infinite-dimensional
fermion many-body systems can be realized in the finite-dimensional case. Furthermore, we
clarify the algebraic mechanism for truncating the collective submanifold.

In sections 2 and 3, preserving the conventional SCF method, the TDHF theory is
reconstructed on an infinite-dimensional fermion Fock spaceF∞. In section 4 the TDHF theory
is transcribed to a τ -functional space. The TDHF theory manifestly results in a gauge theory
of fermions inherent in the usual SCF method and the collective motion appears as a motion of
fermion gauges with a common factor. The role of the soliton equation (Plücker relation) and
the TDHF equation is made clear. The algebraic mechanism bringing the concept of particle
and collective motions is clarified and the close connection between collective variables and
the spectral parameter in soliton theory is induced. Finally, in the last section, a summary and
some concluding remarks are given.

2. Conventional SCF method

We consider a finite many-fermion system with n single-particle states. Let cα and c†
α (α =

1, . . . , n) be the annihilation–creation operators of the fermion. Owing to the anticommutation
relations among them

{cα, c†
β} = δαβ {cα, cβ} = {c†

α, c
†
β} = 0 (2.1)

fermion pair operators span a Lie algebra. The pair operators c†
αcβ satisfy the Lie commutation

relation

[c†
αcβ, c

†
γ cδ] = δβγ c†

αcδ − δαδc†
γ cβ. (2.2)
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The brackets {· , ·} and [· , ·] denote the anticommutator and the commutator, respectively. The
operator c†

αcβ generates a canonical transformation U(g) (= eγαβc
†
αcβ ) which is specified by a

U(n) matrix g as

U(g)c†
αU

−1(g) = c†
βgβα U(g)cαU

−1(g) = cβg∗
βα

U−1(g) = U(g−1) = U(g†) U(gg′) = U(g)U(g′)
(2.3)

where g is represented as below and satisfies the orthogonality condition

g = eγ γ † = −γ (n× n anti-Hermitian matrix)

g†g = gg† = 1n (n-dimensional unit matrix).
(2.4)

We use the dummy index convention to sum up repeated indices unless there is a possibility of
misunderstanding. The symbols †, ∗ and T denote Hermitian conjugation, complex conjugation
and transposition, respectively. Let |0〉 be a free particle vacuum cα|0〉 = 0 (α = 1, . . . , n)
and |φ〉 be an m-particle S-det |φ〉 = c†

m · · · c†
1|0〉. Under (2.2) and (2.3), U(g) transforms |φ〉

to another S-det (the Thouless transformation) [7]

U(g)|φ〉 = (c†g)m · · · (c†g)1|0〉 d= |g〉 U(g)|0〉 = |0〉. (2.5)

The m-particle S-det is an exterior product of m single-particle states. Such states are called
simple states. The set of all simple states together with the equivalence relation identifying
states different from each other only in phases with the same state, constitutes a manifold
known as a GrassmannianGrm. TheGrm is an orbit of the group given through equation (2.5).
In the Grm we can make an expression called the Plücker coordinate which has played an
important role in the algebraic construction of soliton theory in its early stages [14],

U(g)|φ〉 =
∑

n�αm>···>α1�1

vm,...,1αm,...,α1
c†
αm

· · · c†
α1

|0〉

vm,...,1αm,...,α1
= det



gα1,1 · · · gα1,m

...
...

gαm,1 · · · gαm,m


 (Plücker coordinate).

(2.6)

Being induced from calculations of a determinant, we easily find that the Plücker coordinate
has a relation

m+1∑
i=1

(−1)i−1v
m,...,1
βi ,αm−1,...,α1

v
m,...,1
βm+1,...,βi+1,βi−1,...,β1

= 0 (Plücker relation) (2.7)

where the indices denote the distinct sets 1 � α1, . . . , αm−1 � n and 1 � β1, . . . , βm+1 � n.
The Plücker relation is equivalent to a bilinear identity equation

n∑
α=1

c†
αU(g)|φ〉 ⊗ cαU(g)|φ〉 =

n∑
α=1

U(g)c†
α|φ〉 ⊗ U(g)cα|φ〉 = 0. (2.8)

The bilinear equation has a more general form
n∑
α=1

c†
αU(g)|φk〉 ⊗ cαU(g)|φl〉 =

n∑
α=1

U(g)c†
α|φk〉 ⊗ U(g)cα|φl〉 = 0 (n � k � l � 0)

(2.9)

where |φk〉 and |φl〉 denote a k-particle simple state and an l-particle one, respectively. It is
noted that theGrm is essentially an SU(n) group manifold since the phase equivalence theorem
does hold.
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According to Rowe et al [15], we start with a geometrical aspect of the SCF method, i.e.
the TDHF equation, in the following way: let us consider the time-dependent Schrödinger
equation ih̄∂t� = H� with a Hamiltonian

H = hβαc†
βcα + 1

2 〈γα|δβ〉c†
γ c

†
δ cβcα (2.10)

where hβα and 〈γα|δβ〉 denote a single-particle Hamiltonian and a matrix element of an
interaction potential, respectively. This equation is linear but generally shows dispersive
behaviour. A TDHF equation gives a dynamics constrained to a nonlinear space on the Grm.
Suppression of the dispersion of a wavefunction results in the nonlinear TDHF equation in
which a non-dispersive solution is a path on theGrm. The starting point for the TDHF theory
lies in an extremal condition of an action integral

δ

∫ t2

t1

dt L(g(t)) = 0 L(g(t)) d= 〈φ|U(g†(t))(ih̄∂t −H)U(g(t))|φ〉. (2.11)

To obtain an explicit expression for the TDHF equation, we calculate an expectation value
of one- and two-body operators for the S-det (2.5). Using the canonical transformation (2.3),
we have

Wαβ
d= 〈φ|U(g†)c

†
βcαU(g)|φ〉 = (g†)β ′β(g

T)α′α〈φ|c†
β ′cα′ |φ〉 =

m∑
α′=1

gαα′g
†
α′β (2.12)

〈φ|U(g†)c†
γ c

†
δ cβcαU(g)|φ〉 = (g†)γ ′γ (g

†)δ′δ(g
T)β ′β(g

T)α′α〈φ|c†
γ ′c

†
δ′cβ ′cα′ |φ〉

= WαγWβδ −WαδWβγ . (2.13)

From equations (2.12) and (2.13), we obtain an energy functional, expectation value of the
Hamiltonian (2.10)

H [W ]
d= 〈φ|U(g†)HU(g)|φ〉 = hβαWαβ + 1

2 [γα|δβ]WαγWβδ

[γα|δβ] = 〈γα|δβ〉 − 〈γβ|δα〉.
(2.14)

We also obtain the HF Hamiltonian HHF[W ] by projecting the original Hamiltonian onto the
Grm,

HHF[W ] = Fαβ[W ]c†
αcβ Fαβ = δH [W ]

δWβα
= hαβ + [αβ|γ δ]Wδγ . (2.15)

The Lagrange function L(g(t)) in (2.11) is computed as

L(g(t)) = 1
2 ih̄(g†

abġba + g†
ai ġia − ġ†

abgba − ġ†
aigia)−H [W ] (2.16)

using ∂tU(g†(t))U(g(t)) + U(g†(t)) · ∂tU(g(t)) = 0. The condition (2.11) gives the TDHF
equation

d

dt

(
∂L
∂ġ†

)
− ∂L
∂g†

= 0
d

dt

(
∂L
∂ġ

)
− ∂L
∂g

= 0 (2.17)

and then we obtain a compact form of the TDHF equation ih̄∂tg(t) = F[W {g(t)}]g(t). The
time evolution of the S-det (2.5) is given by ih̄∂tU(g(t))|φ〉 = HHF[W(g(t))]U(g(t))|φ〉.
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3. SCF method in F∞

We will construct the SCF method, i.e. the TDHF theory on infinite-dimensional fermion Fock
space F∞, according to the essence of the physical picture in the conventional SCF method.
Although it is different from the usual space-coordinate construction of infinite-dimensional
fermions [16], we will start from the following: the canonical transformation (2.3) preserves
a unitary equivalence for the original single-particle Schrödinger equation, that is to say, it
induces a kind of iso-spectral deformation. We assume that the Schrödinger equation with a TD
potential holds an iso-spectrum under time evolution of the potential. Taking not only the Pauli
principle but also time–energy indeterminacy into account, we can rewrite the anticommutation
relations (2.1) as

{cα(t), c†
β(t

′)} = δαβδ(t − t ′) {cα(t), cβ(t ′)} = {c†
α(t), c

†
β(t

′)} = 0. (3.1)

If the TD potential has periodicity in time T , the eigenfunction has the same periodicity.
Through Laurent expansion of the fermion operators, infinite-dimensional fermion operators
including both particle spectra and Laurent spectra can be obtained as

cα(t) =
∑
r∈Z

(
h̄

T

)1/2

ψ∗
nr+αz

r c†
α(t) =

∑
r∈Z

(
h̄

T

)1/2

ψnr+αz
−r

δ(t − t ′) = h̄

T

∑
r∈Z

e−ih̄ 2π
T
r(t−t ′)

(3.2)

where Z means a set of integers and indices α and r are called the labels on particle spectra and
on Laurent spectra, respectively. Substitution of (3.2) into (3.1) leads to the anticommutation
relations

{ψ∗
nr+α, ψns+β} = δαβδrs {ψ∗

nr+α, ψ
∗
ns+β} = {ψnr+α, ψns+β} = 0. (3.3)

If the canonical transformation (2.3) is time dependent and generates the time evolution of
the potential, it is possible to embed the U(n) group induced from (2.3) into a group induced
from the canonical transformation of the infinite-dimensional fermion operators (3.3). Then,
the method of describing the collective motion as motion of the TD mean-field potential in
the SCF theory may be speculated to have a close connection with the soliton theory on the
infinite-dimensional Fock space [3].

Suppose that the collective motion is dependent only on collective variables η and η∗ with
a period of time T , η(t) = η(t + T ) and η∗(t) = η∗(t + T ). The matrix γ (∈ un) in the
U(n) matrix g (2.4) also has the same periodicity of time T via the collective variables as
γ (t + T ) = γ (η(t + T ), η∗(t + T )) = γ (η(t), η∗(t)) = γ (t). As for the ordinary perturbative
method with respect to η and η∗ with periodicity [1], we will represent the collective variables
η and η∗ as η = √

* eiφ and η∗ = √
* e−iφ with amplitude *. Then we can always express

the matrix γ as γ (η, η∗) = ∑
r,s∈Z

γ̄r,sη
∗rηs = ∑

r∈Z
γrz

r on the Lie algebra un if we put
z = eiφ . Regarding this expression as a relation of the Lie algebra of maps from the unit circle
S1 to the Lie algebra un [16], we make a Laurent expansion of the γ as

γ (z) =
∑
r∈Z

γrz
r z = e−ih̄ωct

(
ωc = 2π

T

)
(3.4)

where r runs in this time over a finite subset of Z. For the anti-Hermitian condition for the
γ (z), we impose the constraints γ †(z) = −γ (z) �→ γ †

r = −γ−r and z−1 = z∗ (|z| = 1). We
can consider these maps as loop groups [10].
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According to Kac and Raina [17], we can introduce an infinite-dimensional Fock space
F∞ and an associative affine Kac–Moody algebra restricting ourselves to un algebra. Using
the fundamental idea of Dirac’s positron theory [13], the perfect vacuum |Vac〉 and reference
vacuum |m〉 are shown as

ψnr+α|Vac〉 = 0 〈Vac|ψ∗
nr+α = 0 (r � −1)

ψ∗
nr+α|Vac〉 = 0 〈Vac|ψnr+α = 0 (r � 0) (3.5)

|m〉 = ψm · · ·ψ1|Vac〉
with normalization conditions 〈Vac|Vac〉 = 1 and 〈m|m〉 = 1. Then we embed the free
vacuum |0〉 and simple state |φ〉 into the infinite-dimensional Fock space F∞ as

|0〉 �→ |Vac〉 |φ〉 �→ |m〉 (m = 1, . . . , n). (3.6)

We assume a state with the Laurent spectrum corresponding to the |0〉 to be a stable state with
minimal energy. This assumption means we make a choice of gauge under which we adopt
the correspondence |0〉 �→ |Vac〉.

Using the correspondence between basic elements: c†
αcβz

r �→ τ(eαβ(r))
d=∑

s∈Z
ψn(s−r)+αψ∗

ns+β and the normal-ordered product: : ψnr+αψ-ns+β :
d= ψnr+αψ-ns+β − δαβδrs

(s < 0), let us define the following ŝun (⊂ ŝln) Lie algebra:

Xγ = Xγ + C · c C
∗ = −C (pure imaginary)

Xγ =
N∑

r=−N

∑
s∈Z

(γr)αβ : ψn(s−r)+αψ∗
ns+β : γ †

r = −γ−r Tr γr = 0

[Xγ , c] = 0 [Xγ ,Xγ ′ ] = X[γ,γ ′] + α(γ, γ ′) · c c|m〉 = 1 · |m〉

(3.7)

←− h −→ | ←− p −→

γ =

↑

h

↓
↑

p

↓




. . .
. . .

γ−2 γ−1 γ0 γ1 γ2
. . .

γ−2 γ−1 γ0 γ1 γ2
. . .

. . . γ−2 γ−1 γ0 γ1 γ2

. . . γ−2 γ−1 γ0 γ1 γ2

. . .
. . .




α(γ, γ ′) =
N∑

r=−N
r Tr(γrγ

′
−r ) = − 1

2 Tr




. . .

−In
−In

In
In

. . .




[γ , γ ′]

(3.8)

where c and In denote the centre and the n-dimensional unit matrix. The matrix γ is divided
into four blocks by specifying apparently occupied states h and unoccupied states p for the
perfect vacuum |Vac〉. Corresponding to this division, the matrix in the 2-cocycle α is also
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divided into four blocks in analogy with Dirac’s positron theory [13] as seen in the above. γ
and γ ′ represent off-diagonal parts of the matrices γ and γ ′ as

γ
d=




γ2
. . .

γ1 γ2

γ−2 γ−1

. . . γ−2


 γ ′ d=




γ ′
2

. . .

γ ′
1 γ ′

2
γ ′

−2 γ ′
−1

. . . γ ′
−2


. (3.9)

Note the relation α∗(γ, γ ′) = −α(γ, γ ′) and properties γ † = −γ and γ ′† = −γ ′. Now, using
(3.3), (3.7) and the identity [AB,C] = A{B,C} − {A,C}B, adjoint actions of Xγ for ψ and
ψ∗ are computed as

[Xγ ,ψnr+α] =
N∑

s=−N
ψn(r−s)+β(γs)βα

[Xγ ,ψ
∗
nr+α] =

N∑
s=−N

ψ∗
n(r−s)+β(γ

∗
s )αβ .

(3.10)

Here s runs over a finite set of the integer Z (= −N,−N + 1, . . . , N). Furthermore, using
(3.10) and the operator identity called the Baker–Campbell–Hausdorff formula

eXγAe−Xγ = A + [Xγ ,A] +
1

2!
[Xγ , [Xγ ,A]] + · · · (3.11)

the infinite-dimensional fermion operator is transformed by the canonical transformation
U(ĝ)(ĝ = eγ ), which satisfies U−1(ĝ) = U(ĝ−1) = U(ĝ†) and U(ĝĝ′) = U(ĝ)U(ĝ′)
with ĝ†ĝ = ĝĝ† = 1∞, into the forms

ψnr+α(ĝ)
d= U(ĝ)ψnr+αU−1(ĝ) =

∑
s∈Z

ψn(r−s)+β(gs)βα

ψ∗
nr+α(ĝ)

d= U(ĝ)ψ∗
nr+αU

−1(ĝ) =
∑
s∈Z

ψ∗
n(r−s)+β(g

∗
s )βα

(3.12)

where 1∞ is an infinite-dimensional unit matrix and ĝnr+α,ns+β = (gs−r )αβ , ĝ†
nr+α,ns+β =

(g
†
r−s)αβ and

δrsδαβ = (ĝĝ†)nr+α,ns+β =
∑
t∈Z

(gtg
†
t+(r−s))αβ

δrsδαβ = (ĝ†ĝ)nr+α,ns+β =
∑
t∈Z

(g†
t gt−(r−s))αβ .

(3.13)

Note that ĝ forms a periodic sequence with period n and s and t run over a formally infinite
set of Z.

Let us construct the TDHF theory in F∞. The bilinear equations (2.8) and (2.9) can be
embedded into those in F∞. Using the corresponding arguments |φk〉 �→ |k〉, U(g) �→ U(ĝ)

(= eXγ ) and

n∑
α=1

c†
α ⊗ cα �→

n∑
α=1

∑
r∈Z

c†
αz

−r ⊗ cαzr �
n∑
α=1

∑
r∈Z

ψnr+α ⊗ ψ∗
nr+α (3.14)
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they are embedded into the bilinear equations on F∞ as
n∑
α=1

∑
r∈Z

ψnr+αU(ĝ)|m〉 ⊗ ψ∗
nr+αU(ĝ)|m〉

=
n∑
α=1

∑
r∈Z

U(ĝ)ψnr+α|m〉 ⊗ U(ĝ)ψ∗
nr+α|m〉 = 0 (m = 1, . . . , n) (3.15)

n∑
α=1

∑
r∈Z

ψnr+αU(ĝ)|k〉 ⊗ ψ∗
nr+αU(ĝ)|l〉

=
n∑
α=1

∑
r∈Z

U(ĝ)ψnr+α|k〉 ⊗ U(ĝ)ψ∗
nr+α|l〉 = 0 (k � l; k, l = 1, . . . , n).

(3.16)

Thus we arrive at the following picture: the algebra of extracting subgroup orbits made of
the loop path from Grm belongs to an sln-reduction of gl∞ in soliton theory. Relieving from
restrictions of sun and (3.15) and taking γ ∈ sln withm and k � l (∈ Z), equations (3.15) and
(3.16) can be regarded as the bilinear equations of the reduced KP (Kadomtsev–Petviashvili)
hierarchy and the modified KP in soliton theory [3]. This picture suggests the possibility of
constructing the SCF method for an equation of collective motion governed by equations (3.15)
and (3.16) on a bigger space sln than sun. However, we must note that in the SCF method
the bilinear equations (3.15) and (3.16) are considered to play the role of conditions ensuring
the existence of subgroup orbits on the Grm different from soliton theory in which boson
expressions for them become an infinite set of dynamical equations. Note also that the concept
of a quasi-particle and vacuum in the SCF method on S1 is connected to the Plücker relation
by using the basic idea of Dirac’s positron theory [13].

Now we attempt to embed the original two-body Hamiltonian (2.10) into the F∞. By
replacing the annihilation–creation operators of the fermions as cα �→ ∑

r∈Z
ψ∗
nr+α and

c†
α �→ ∑

r∈Z
ψnr+α , we obtain

HF∞ = hβα
∑
r,s∈Z

ψnr+βψ
∗
ns+α + 1

2 〈γα|δβ〉
∑

k,l∈Zr,s∈Z

ψnk+γ ψnl+δψ
∗
ns+βψ

∗
nr+α. (3.17)

Introducing a new Laurent spectral number K , a pair operator is rewritten into a form∑
r,s∈Z

ψnr+βψ
∗
ns+α �→

∑
K∈Z

∑
s∈Z

ψn(s−K)+βψ∗
ns+α. (3.18)

To embed the SCF Hamiltonian (2.15), we introduce a general Hamiltonian on the F∞ as

HF∞ =
∑
r,s∈Z

hns+β,nr+αψns+βψ
∗
nr+α

+ 1
2

∑
r,s∈Zk,l∈Z

〈nk + γ, nr + α|nl + δ, ns + β〉ψnk+γ ψnl+δψ∗
ns+βψ

∗
nr+α (3.19)

which is equivalent to (3.17) if hns+β,nr+α = hβα and 〈nk +γ, nr +α|nl + δ, ns +β〉 = 〈γα|δβ〉
(equivalence conditions forHF∞ ) hold. To calculate the formal expectation value of (3.19) for
the vector U(ĝ)|m〉, first we do it for one- and two-body operators. Using equation (3.12) we
obtain

〈m|ψns+βψ∗
nr+α|m〉 = δsrδβα (for r = 0, α = 1, . . . , m and for r < 0, α = 1, . . . , n)

〈m|ψnk+γ ψnl+δψ∗
ns+βψ

∗
nr+α|m〉 = δkrδγα · δlsδδβ − δksδγβ · δlrδδα

(for r(s) = 0, α(β) = 1, . . . , m and for r(s) < 0, α(β) = 1, . . . , n).

(3.20)
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Then for one- and two-body-type operators we obtain formally

W
f

nr+α,ns+β = 〈m|U(ĝ†)ψns+βψ
∗
nr+αU(ĝ)|m〉

=
m∑
γ=1

ĝnr+α,γ ĝ
†
γ,ns+β +

∑
t<0

n∑
γ=1

ĝnr+α,nt+γ ĝ
†
nt+γ,ns+β

=
m∑
γ=1

(g−r )αγ (g
†
−s)γβ +

∑
t<0

n∑
γ=1

(gt−r )αγ (g
†
t−s)γβ (3.21)

〈m|U(ĝ†)ψnk+γ ψnl+δψ
∗
ns+βψ

∗
nr+αU(ĝ)|m〉 = Wf

nr+α,nk+γW
f

ns+β,nl+δ −Wf

nr+α,nl+δW
f

ns+β,nk+γ .

(3.22)

Thus we obtain the formal expectation value of (3.19) as

〈HF∞〉[Wf ] =
∑
r,s∈Z

hns+β,nr+αW
f

nr+α,ns+β

+ 1
2

∑
r,s∈Z

[nk + γ, nr + α|nl + δ, ns + β]Wf

nr+α,nk+γW
f

ns+β,nl+δ

[nk + γ, nr + α|nl + δ, ns + β] = 〈nk + γ, nr + α|nk + δ, ns + β〉 − 〈δ ←→ γ 〉.

(3.23)

For the Hamiltonian (3.17), from (3.23) and the equivalence conditions for HF∞ , we obtain

〈HF∞〉[Wf ] = hβα
∑
r,s∈Z

W
f

nr+α,ns+β + 1
2 [γα|δβ]

∑
r,s∈Z k,l∈Z

W
f

nr+α,nk+γW
f

ns+β,nl+δ

=
∑
k∈Z

(hk)βα
∑
s∈Z

W
f

ns+α,n(s−k)+β

+ 1
2

∑
k,l∈Z

[(k, γ ), α|(l, δ), β]
∑
r∈Z

W
f

nr+α,n(r−k)+γ
∑
s∈Z

W
f

ns+β,n(s−l)+δ

(hk)βα ≡ hβα [(k, γ ), α|(l, δ), β] ≡ [γα|δβ].

(3.24)

To avoid the anomaly in the expectation value, taking a summation over the infinite numbers,
we change the one-body operator (3.21) into its normal-ordered product form as

(Wk)αβ
d= 〈m|U(ĝ†) : τ(eβα(−k)) : U(ĝ)|m〉

=
∑
r∈Z

〈m|U(ĝ†) : ψn(r+k)+βψ
∗
nr+α : U(ĝ)|m〉

=
∑
r∈Z

W
f

nr+α,n(r+k)+β −
∑
r<0

δk,0δβα =
∑
r∈Z

m∑
γ=1

(g−r )αγ (g
†
−r−k)γβ (3.25)

where we have used the correspondence relation between basic elements.
Wk is identical to a coefficient of the Laurent expansion of the density matrix (2.12)

Wαβ(z) =
∑
k∈Z

(Wk)αβz
k =

∑
k∈Z

∑
s∈Z

m∑
γ=1

(gs)αγ (g
†
s−k)γβz

k. (3.26)

ChangingWf in (3.24) into its normal-ordered product and using (3.25), we obtain

〈HF∞〉[W ] = hβα
∑
k∈Z

(W−k)αβ + 1
2 [γα|δβ]

∑
k,l∈Z

(W−k)αγ (W−l)βδ

=
∑
k∈Z

{hβα(W−k)αβ + 1
2 [γα|δβ]

∑
l∈Z

(W−k+l)αγ (W−l)βδ}. (3.27)
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The result coincides with the formal Laurent polynomials of (2.14) in the sense of

H [W(z)] = hβα
∑
k∈Z

(Wk)αβz
k + 1

2 [γα|δβ]
∑
k,l∈Z

(Wk)αγ z
k(Wl)βδz

l

=
∑
l∈Z

{hβα(Wl)αβ + 1
2 [γα|δβ]

∑
k∈Z

(Wl−k)αγ (Wk)βδ}zl. (3.28)

The time dependence of the energy functional is brought through z(t). To preserve the time
independence, in (3.28) we put the Laurent spectrum l zero. That is to say, we may select a
sub-functional as

〈HF∞〉[W ] = hβα(W0)αβ + 1
2 [γα|δβ]

∑
k∈Z

(Wk)αγ (W−k)βδ (3.29)

which means that the Laurent spectra k and l in the first line of equation (3.27) cancel each
other. That is extraction of the sub-Hamiltonian H sub

F∞ out of equation (3.17) as

H sub
F∞ = hβα

∑
s∈Z

ψns+βψ
∗
ns+α + 1

2 [γα|δβ]
∑
k∈Z

∑
r,s∈Z

ψn(r−k)+γ ψn(s+k)+δψ∗
ns+βψ

∗
nr+α. (3.30)

The above extraction permits us to interpret HF∞ [W ] as

H [W(z)]|z0 = 1

2π i

∮
H [W(z)]

z
dz.

Therefore, we adopt here equation (3.29) as the energy functional for the un algebra on F∞.
Through the variation

δ〈HF∞〉[W ] =
∑
k∈Z

(F−k)αβδ(Wk)βα (Fk)αβ d= hαβδk,o + [αβ|γ δ](Wk)δγ (3.31)

we obtain an SCF Hamiltonian on F∞ very similar to the formal Laurent expansion of HHF

(2.15) on Grm as

HF∞;HF =
∑
k∈Z

∑
s∈Z

(Fk)αβ : ψn(s−k)+αψ∗
ns+β : . (3.32)

For the TDHF equation onF∞, the state vectorU(ĝ)|m〉 is required to satisfy the variational
principle

δS =
∫ t2

t1

dt L(ĝ) = 0 L(ĝ) = 〈m|U(ĝ†)(i∂t −HF∞)U(ĝ)|m〉 (3.33)

where we use h̄ = 1 here and hereafter. First, by using U(ĝ) = eXγ we obtain the following
relations:

δĝ

∫
dt 〈m|U(ĝ†)i∂tU(ĝ)|m〉 = δĝ

∫
dt 〈m|i∂t |m〉

+δĝ

∫
dt 〈m|i∂tXγ − 1

2!
[Xγ , i∂tXγ ] + · · · + |m〉 (3.34)

i∂tXγ =
N∑

r=−N

∑
s∈Z

{(i∂tγr)αβ : ψn(s−r)+αψ∗
ns+β : +(γr)αβ i∂t : ψn(s−r)+αψ∗

ns+β :} + i∂tC (3.35)

where we have used (3.11) and (3.12). From the definition of τ(eαβ(r)) and the normal-ordered
product, we can calculate the time differentiation of the second term in the curly brackets of
equation (3.35) as

i∂t
∑
s∈Z

: ψn(s−r)+αψ∗
ns+β := i∂t : τ(eαβ(r)) := ir∂t ln z : τ(eαβ(r)) : . (3.36)
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Assuming that the parameter of the Laurent expansion is given by z = e−iωct , equation (3.35)
is rewritten as

i∂tXγ =
N∑

r=−N

∑
s∈Z

(Dr;t (γr )αβ) : ψn(s−r)+αψ∗
ns+β : +i∂tC Dr;t

d= i∂t + rωc. (3.37)

It is seen that in the first term of the right-hand side of (3.34) a time evolution of the reference
vacuum through z(t) has no influence on the variation with respect to ĝ. Concerning the time
evolution of Xγ (3.37) a time differential ∂t acting on γr(t) and on ψ and ψ∗ through z(t)
is transformed into a covariant differential Dr;t with a connection rωc which acts only on
the γr(t) from the gauge-theoretic viewpoint. We denote the covariant differential simply as
D. Therefore, we can put 〈m|i∂t |m〉 = 0 and C = 0 since it has no influence on the energy
functional (3.29). Then the time-differential term in (3.33) is calculated as

U(ĝ†)i∂tU(ĝ) = i∂tXγ +
1

2!
[i∂tXγ ,Xγ ] +

1

3!
[[i∂tXγ ,Xγ ], Xγ ] + · · ·

= XDγ +
∑
k�2

1

k!
[· · · [i∂tXγ ,Xγ ], . . .], Xγ ] + · · · . (3.38)

Using equation (3.7) and the symbol D for the covariant differential, each commutator is
calculated as

[i∂tXγ ,Xγ ] = X[Dγ,γ ] − 1
2 Tr

[ −I
I

]
[Dγ , γ ]

[[i∂tXγ ,Xγ ], Xγ ] = X[[Dγ,γ ],γ ] − 1
2 Tr

[ −I
I

]
[[Dγ, γ ], γ ]

...

[· · · [i∂tXγ ,Xγ ], . . .], Xγ ] = X[···[Dγ,γ ],...],γ ] − 1
2 Tr

[ −I
I

]
[· · · [Dγ, γ ], . . .], γ ].

(3.39)

In the aboveM denotes off-diagonal parts of any matrixM and the infinite-dimensional unit

matrix I∞ is abbreviated simply as I . Substituting (3.39) into (3.38) and usingDr
d= Dr;t and

ĝ = eγ , we obtain

U(ĝ†)i∂tU(ĝ) = Xĝ†Dĝ + C(ĝ†Dĝ)

ĝ†Dĝ
d=




. . .
. . .

g
†
1 g

†
0 g

†
−1

g
†
1 g

†
0 g

†
−1

g
†
1 g

†
0 g

†
−1

. . .
. . .







. . .
. . .

D−1g−1 D0g0 D1g1

D−1g−1 D0g0 D1g1

D−1g−1 D0g0 D1g1

. . .
. . .




C(ĝ†Dĝ) = − 1
2 Tr

[ −I
I

] ∑
k�2

1

k!
[· · · [Dγ, γ ], · · ·], γ ]. (3.40)

The expectation value for the reference vacuum is expressed as

〈m|U(ĝ†)i∂tU(ĝ)|m〉 =
∑
s∈Z

m∑
α=1

n∑
γ=1

(g†
s )αγ (Ds;t gs)γα + C(ĝ†Dĝ). (3.41)
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Using C(ĝ†Dĝ)− C(Dĝ† · ĝ) = 0 which is proved later, we obtain an explicit expression for
the L(ĝ) as

L(ĝ) = 1
2

∑
s∈Z

m∑
α=1

n∑
γ=1

{(g†
s )αγ (Ds;t gs)γα − (D−s;t g†

s )αγ (gs)γα} − 〈HF∞〉[W ]. (3.42)

Thus L(ĝ) is nothing other than the coefficient of z0 in the Laurent expansion of L(g(z))
(2.16).

We give the TDHF equation for ĝ identical with the Laurent expansion of i∂tg(t) =
F[W {g(t)}]g(t) and i∂tU(g(t))|φ〉 = HHF[W(g(t))]U(g(t))|φ〉. Demand on the extremal
condition in (3.32) leads to

Dtĝ = F(ĝ)ĝ F(ĝ) d=




. . .
. . .

F−1 F0 F1

F−1 F0 F1

F−1 F0 F1

. . .
. . .



. (3.43)

Defining matrix elements (F cr )αβ(ĝ, ωc)
d= ωc

∑
s∈Z
s(gsg

†
s−r )αβ , equation (3.43) is

transformed to

i∂t ĝ = Fp(ĝ)ĝ Fp(ĝ) d= F(ĝ)− F c(ĝ)
(Fpr )αβ

d= (Fr − F cr )αβ = hαβδr,0 + [αβ|γ δ](Wr)δγ − ωc
∑
s∈Z

s(gsg
†
s−r )αβ

(3.44)

introducing D̂t
d= i∂t +HcF∞;HF, this time which is cast into that on the state vector U(ĝ)|m〉 as

D̂tU(ĝ)|m〉 = HF∞;HFU(ĝ)|m〉 HcF∞;HF
d=

∑
r,s∈Z

(F cr )αβ : ψn(s−r)+αψ∗
ns+β :

i∂tU(ĝ)|m〉 = HpF∞;HFU(ĝ)|m〉 H
p

F∞;HF
d=

∑
r,s∈Z

(Fpr )αβ : ψn(s−r)+αψ∗
ns+β :

(3.45)

which suggest symmetry breaking and the occurrence of collective motion due to recovery of
symmetry. Suppose that ĝ to diagonalize Fp in HpF∞;HF and U(ĝ)|m〉 to do F c in HcF∞;HF are
determined spontaneously when ĝ � ĝ0e−iε̂ t and ∂t ĝ0 = 0. Using the definition of F c we
have ωc=(ĝ0) = F(ĝ0)ĝ0 − ĝ0ε̂ where

=(ĝ0)
d=




. . .
. . .

−g0
−1 0 g0

1

−g0
−1 0 g0

1

−g0
−1 0 g0

1
. . .

. . .




ε̂
d=




. . .

ε

ε

ε

. . .




(3.46)

and grzr ∝ e−i(ε+ωcrIn)t . Thus the quasi-particle energy ε (εαβ = εαδαβ) and the boson energy
ωc are unified into a gauge phase. The HF theory onGrm has not the obviously collective term
(3.46) and leads inevitably to ωc=(ĝ0) = 0. ĝ0 must be composed of only a block-diagonal
g0

0 = exp γ0 where γ0 (∈ sun) is a block-diagonal matrix of γ (3.8).
Equation (3.45) gives the time evolution of particle degrees of freedom. Thus we obtain a

common language, an infinite-dimensional Grassmannian and an affine Kac–Moody algebra,
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to discuss the relation between SCF and soliton theories. The SCF theory under level one
on F∞ is nothing other than the zeroth order of the Laurent expansion on Grm. Through
construction of the SCF theory on F∞, the explicit algebraic structure of the SCF theory on
F∞ is made clear as it is just the gauge theory inherent in the SCF theory. Mean-field potential
degrees of freedom occur from the gauge degrees of freedom of fermions and the fermions
make pairs among them absorbing change of gauges. The sub-Hamiltonian (3.30) exhibits
such a phenomenon in the un algebra, which allows us to interpret the absorption of the gauge
as a coherent property of fermion pairs. Thus the SCF theory can be regarded as a method
to determine self-consistently or spontaneously both the quasi-particle energy εα(ĝ) and the
boson energy ωc which is due to the time evolution of the fermion gauge. Then it becomes
possible to say that both the energies have been unified into the gauge phase.

Let ε and ε∗ be parameters specifying a continuous deformation of loop path on Grm.
Using the notation in (3.7) and calculating in a similar way to (3.40), e−Xγ ∂εeXγ is obtained as

e−Xγ ∂εeXγ = Xĝ−1∂ε ĝ + C(ĝ−1∂εĝ)

ĝ−1∂εĝ = ∂ε + ∂ε(C · 1) + ∂εγ +
∑
k�2

1

k!
[· · · [∂εγ, γ ], . . .], γ ].

(3.47)

Due to Tr γr = 0 Xγ reads Xγ = ∑N
γ=−N

∑
s∈Z
(γr)αβ : ψn(s−γ )+αψ∗

ns+β : and e−Xγ ∂εeXγ is
computed to be

e−Xγ ∂εeXγ =
∑
r,s∈Z

(ĝ−1∂εĝ)r : ψn(s−r)+αψ∗
ns+β : +

∑
s<0

Tr(ĝ−1∂εĝ)0. (3.48)

From equations (3.47) and (3.48), we obtain C(ĝ−1∂εĝ) = ∑
s<0 Tr(ĝ−1∂εĝ)0 =

0, (ĝ−1∂εĝ)0 ∈ sln. We also obtain C(ĝ†∂ε∗ ĝ) = C(∂ε∗ ĝ
† · ĝ) = 0 and C(ĝ†Dĝ) =

C(Dĝ† · ĝ) = 0. We define infinitesimal generators of the collective submanifold as follows:

Xθ†
d= i∂εU(ĝ) · U(ĝ)† = Xθ† + C(i∂εĝ · ĝ†) θ† d= i∂εĝ · ĝ†

Xθ
d= i∂ε∗U(ĝ) · U(ĝ)† = Xθ + C(i∂ε∗ ĝ · ĝ†) θ

d= i∂ε∗ ĝ · ĝ†
(3.49)

where terms C(· · ·) vanish. The infinitesimal generators as functions of ε and ε∗ are changed
to differential operators. Using this idea, we developed a theory for large-amplitude collective
motions [18]. From ∂ε∗ 〈ĝ|∂ε |ĝ〉 − ∂ε〈ĝ|∂ε∗ |ĝ〉 and equations (3.7) and (3.25), we obtain the
weak orthogonality condition [1, 12]

1 = 〈ĝ|[Xθ,Xθ† ]|ĝ〉 =
m∑
α=1

n∑
γ=1

∑
r∈Z

([θ, θ†]r )αγ (W−r )γ α − 1
2 Tr

[ −I
I

]
[θ̄ , θ̄†]. (3.50)

We can treat the equation of collective motion and the collective submanifold along the idea
of Lax pairs [19] for the construction of integrable systems. Any path on the collective
submanifold can be represented as ĝ(t) = ĝ0(ε(t), ε∗(t)) e−iε̂ (ε(t),ε∗(t))t , in which the collective
part corresponding to a loop path on the Grm is given by ĝ|c = ĝ0(ε, ε∗) e−iε̂ (ε,ε∗)t and
dε
dt = dε∗

dt = 0. For the ĝ|c, equations (3.43) and (3.49) are converted, respectively, to curvature
equations which should vanish to satisfy integrability conditions for ε, ε∗ and t . Although
for simplicity we took C(ĝ−1∂εĝ), etc to vanish from the condition of sln, even if they have
non-zero constant values with respect to ĝ, the above remarks are still maintained.
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4. SCF method in τ -functional space

Along the soliton theory in the infinite-dimensional fermion Fock space [3, 17, 20, 21], we
transcribe the TDHF theory in F∞ to that in τ -functional space. A Heisenberg subalgebra S
[17] is given by

S = ⊕
k �=0
?k + C · c,?k d=

∑
i∈Z

: ψiψ
∗
i+k : (k ∈ Z) (4.1)

from which the boson algebra is obtained as [?k,?l] = kδk+l,0. ?k is called the shift
operator and ?0 belongs to the centre. We take only c = 1 (level-one case). Then the

boson mapping operator is introduced as σm
d= 〈m|eH(x) where H(x) = ∑

j�1 xj?j is the
Hamiltonian in the τ -functional method [3]. By which the following isomorphism is described
as σm;F (m) �→ B(m) = C(x1, x2, . . .) and |m〉 �→ 1, then

?k �→ ∂

∂xk
?−k �→ kxk (k > 0) ?0 �→ m (4.2)

where F (m) and B(m) denote m-charged fermion space and the corresponding boson space,
respectively, and the degree is defined by deg(xj ) = j . The contravariant Hermitian form on
the B(m) is given as

〈1|1〉 = 1

(
∂

∂xk

)†

= kxk 〈P |Q〉 = P ∗
(
∂

∂x1
,

1

2

∂

∂x2
, . . .

)
Q(x)|x=0 (4.3)

where the P ∗ means the complex conjugation of all the coefficients of polynomials P and
x = (x1, x2, . . .).

Then the group orbit of the highest-weight vector |m〉 under the action U(ĝ) (= eXa ) of
GL(∞) is mapped to a space of the τ -function τm(x, ĝ) = 〈m|eH(x)U(ĝ)|m〉.

We construct the representation in B(m) in the reduction to the ŝln. Let the generating
series be

�(p) =
∑
j∈Z

pjψj �∗(p) =
∑
j∈Z

p−jψ∗
j (p ∈ C\0). (4.4)

The algebra Xa (=
∑
i,j∈Z

aij : ψiψ∗
j : + C · 1) ∈ ŝln must satisfy the following conditions:

(i) ai+n,j+n = aij (i, j ∈ Z)

(ii)
n∑
i=1

ai,i+jn = 0 (j ∈ Z).
(4.5)

From (i) and ?jn = ∑
i∈Z

: ψiψ∗
i+jn : (j ∈ Z), [Xa,?jn] = 0. This tells us that

τm(x, ĝ)(ĝ ∈ ŝln) is independent of xjn. Note that ?jn does not satisfy (ii). Using (i),
the generating function is rewritten as

�(p)�∗(q) =
∑
i,j∈Z

ψiψ
∗
j p
iq−j =

∑
i,j∈Z

ψi+nψ
∗
j+np

iq−jpnq−n (4.6)

where we must set the condition pn = qn, i.e. q = εsp, ε = e2π i/n (s = 0, 1, . . . , n − 1).
Then the vertex representation of : �(p)�∗(q) : becomes

: Ψ(p)Ψ∗(ε∗p) := 1

1 − εs {ε
−ms=(p, εsp)− 1}

=(p, εsp) =
{

exp
∑
j�1

(1 − εsj )pjxj
}{

exp
∑
j�1

−(1 − ε−sj )
j

p−j ∂
∂xj

}
.

(4.7)
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Introducing the Schur polynomials by the generating function, exp
∑∞
k�1 xkp

k =∑
k�0 Sk(x)p

k [3, 20], the explicit expression for any element is obtained as

σm;Xa =
∑
i,j∈Z

aij : ψiψ
∗
j : + C · 1 �→

∑
i,j

aij z̃ij (x, ∂̃x) + C · 1

z̃ij (x, ∂̃x) =
∑

µ,ν�0,k�0

Si+k+µ−m(x)S−j−k+ν+m(−x)Sµ(−∂̃x)Sν (̃∂x)− δij · 1 (j � 0)
(4.8)

which is independent on all xjn and ∂̃x
d= ( ∂

∂x1
, 1

2
∂
∂x2
, . . .).

With the use of the above descriptions for the τ -functional method, we can transcribe
easily the fundamental equations (3.15) and (3.45) for the TDHF theory on U(ĝ)|m〉 ⊂ F (m)
into the corresponding τ -function ⊂ B(m) in the following forms.

(a) U(ĝ)|m〉(U(ĝ) = eXγ ;Xγ ∈ ŝun ⊂ ŝln) �→ the τ -function;

τm(x, ĝ) = 〈m|eH(x)U(ĝ)|m〉 ∂

∂xjn
τm(x, ĝ) = 0. (4.9)

(b) The quasi-particle and vacuum states �→ Hirota’s bilinear equation (see [2, 3]);
n∑
α=1

∑
r∈Z

ψnr+αU(ĝ)|m〉 ⊗ ψ∗
nr+αU(ĝ)|m〉 = 0

�→
∑
j�0

Sj (−2y)Sj+1(D̃) exp

(∑
s�1

ysDs

)
τm(x, ĝ)τm(x, ĝ) = 0. (4.10)

(c) The TDHF equation on U(ĝ)|m〉 �→ the TDHF equation on τm(x, ĝ);

i∂tU(ĝ(t))|m〉 = HpF∞(ĝ(t))U(ĝ(t))|m〉
�→ i∂tτm(x, ĝ(t)) = HpF∞(x, ∂̃x, ĝ(t))τm(x, ĝ(t)) (4.11)

in which using equation (4.8), HpF∞(x, ∂̃x, ĝ) is given as

H
p

F∞(x, ∂̃x, ĝ) =
∑
r,s∈Z

(Fpr (ĝ))αβ z̃n(s−r)+α,ns+β(x, ∂̃x)

(Fpr (ĝ))αβ = hαβδr,0 + [αβ|γ δ](Wr)δγ − ωc
∑
s∈Z

s(gsg
†
s−r )αβ

(Wr)αβ =
m∑
γ=1

∑
s∈Z

(gs)αγ (g
†
s−r )γβ .

(4.12)

D = (D1,D2, . . .) denotes Hirota’s bilinear differential operator [2] and D̃ =
(D1,

1
2D2, . . .).

Algebraic manipulation of the extraction of the subgroup orbits on the Grm is just the
method of the integrable equation (4.10) for the sun (⊂ sln) reduced KP hierarchy.

The trajectories of the TDHF equation are running in their various subgroup orbits. If we
only have to know the form of Xγ deciding the subgroup orbits by the soliton equations, we
can construct a Hamiltonian made of only the elements ofXγ . Then the Hamiltonian becomes
integrable on the subgroup orbit.

We are now in a position to consider the collective submanifold. We will clarify more
clearly the relation of the concept of particle and collective motions in the TDHF theory
to that of the soliton theory from the loop group viewpoint. The identification by Pressely
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and Segal [10] surprisingly connects the Hilbert space H(n) = L2(S1; C
n) with the standard

Hilbert space H = H(1) = L2(S1; C) by an obvious lexicographic correspondence between
their orthonormal basis. The L2(S1; C

n) denotes square summable C
n-valued functions on

the circle. Then we construct a one-component fermion operator

c̃(u) =
n∑
α=1

uα−1cα(u
n) c̃†(u) =

n∑
α=1

u−(α−1)c†
α(u

n). (4.13)

Conversely, for given c̃ ∈ H, we obtain (cα) ∈ H(n) by

cα′+1(z) = 1

n

∑
u

u−α′
c̃(u) c

†
α′+1(z) = 1

n

∑
u

uα
′
c̃†(u) (α′ = 0, . . . , n− 1) (4.14)

u runs through the nth roots of z so as to satisfy u = eiθ = εseiφ/n with ε = ei2π/n

(s = 0, . . . , n− 1) putting z = un = eiφ . Using (3.2), we obtain the one-component fermion
operator c̃(u) and c̃†(u)

c̃(u)
d=

∑
r∈Z

n∑
α=1

ψ∗
nr+αu

nr+α−1 d=
∑
r∈Z

n∑
α=1

ψ̃∗
nr+α−1u

nr+α−1

c̃†(u)
d=

∑
r∈Z

n∑
α=1

ψnr+αu
−(nr+α−1) d=

∑
r∈Z

n∑
α=1

ψ̃nr+α−1u
−(nr+α−1).

(4.15)

Using equation (4.15), the shift operator ?k can be transcribed to that on C[u, u−1] as

: c̃†(u)c̃(u) : =
∑
r,s∈Z

n∑
α,β=1

: ψ̃n(s−r)+α−1ψ̃
∗
ns+β−1 : unr+α−1

=
∑
r∈Z

n∑
α=1

(∑
s∈Z

n∑
β=1

: ψns+β−(nr+α−1)ψ
∗
ns+β :

)
unr+α−1

=
∑
r∈Z

n∑
α=1

?nr+α−1u
nr+α−1. (4.16)

The commutator of ?nr+α−1’s can be computed as [?nr+α−1,?nr+β−1] = (nr + α −
1)δr+s,0δα+β,0 · 1. By the analytic continuation, u or z can be extended from |u| = 1 (θ ∈ R)
or |z| = 1 (φ ∈ R) to the complex plane u (θ ∈ C) or z (φ ∈ C).

We rotate a circle on a complex plane u and z, respectively. Then with the use of the
relations −i d

dθ = u d
du and −i d

dφ = z d
dz we obtain

−i
d

dθ
unr+α−1 = (nr + α − 1)unr+α−1 − i

d

dφ
unr+α−1 =

(
r +
α − 1

n

)
unr+α−1. (4.17)

From the TDHF viewpoint, if we assume φ = −ωct on C[z, z−1], we have

i
d

dt
unr+α−1 = −φ̇

(
r +
α − 1

n

)
unr+α−1 = ωc

(
r +
α − 1

n

)
unr+α−1. (4.18)

Thus each of the infinite-dimensional fermions proves that of the fermion-harmonic oscillators
with degree (energy) (nr +α−1) owing to the rotation of the gauge. Each shift operator plays a
part of bosons carrying energy (nr +α−1) among the fermion-harmonic oscillators. The set of
xk (4.2) means coordinates of boson-harmonic oscillators which become the coordinate system
on the τ -functional space. Through a scaling parameter ρ (∈ C\0)we give the correspondence
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of the one-component fermion operator (c̃(p−1), c̃†(p−1)) to the generating series (4.4) in the
sense of analytical continuation,

p = ρu−1 d= p(θ = 0)u−1 = p(θ = 0) e−iθ

(c̃(ρ−1u), c̃†(ρ−1u)) = (c̃(p−1), c̃†(p−1)) �→ (�∗(p),�(p)).
(4.19)

For various discrete values of p we take pi = pi(θ = 0)u−1 (i = 1, 2, . . .) with a common
gauge factor u.

From the TDHF theoretical viewpoint, on the space C[z, z−1] except?0, the shift carried
by the shift operator ?±(nr+α−1) is classified into ± α−1

n
with r = 0 called the intrinsic shift

(Fermi), ±|r| with α − 1 = 0 called the Laurent shift (Bose) and ±(|r| + α−1
n
) otherwise, the

coupling shift (Fermi ⊕ Bose). The Laurent shift is just a ladder shift by collective bosons. If
a label of? on C[u, u−1] takes k without period n, we cannot classify it as the above but have
the KP hierarchy. If we impose conditions of the reduction to sln

(i) [Xa,?nr ] = 0

and

(ii)
n∑
α=1

anr+α−1,n(r+s)+α−1 = 0 (s ∈ Z)

then we have only to return to the original space C[z, z−1]. The ?nr has a conserved quantity
on the group orbit U(ĝ = eXa )|m〉 (Xa ∈ ŝln) due to (i). No dependence of the τ -function on
xnr (r > 0) appears. In the TDHF theory we use the ?nr (r �= 0) like up and down operators
of collective excitations. Owing to the scaling (4.19) and the generating series (4.4), the last
line in (4.16) is divided into the three classes

:�(p)�∗(p) : = : c̃†(p−1)c̃(p−1) : =
n∑
α=1

?±(α−1)p
∓(α−1)(θ = 0)u±(α−1)

+
∑
r>0

?±nrp∓nr (θ = 0)u±nr

+
∑
r>0

∑
α−1�=0

?±(nr+α−1)p
∓(nr+α−1)(θ = 0)u±(nr+α−1). (4.20)

In the soliton theory pn(θ = 0) (r = 1) means a spectral parameter of the iso-spectral
equation and pnr(θ = 0) (r > 1) restricts a differential equation governing the Baker function
φW into an equation ∂

∂xnr
φW = pnr(θ = 0)φW [22]. In the TDHF theory the exponent r

of z−r (= u−nr ) (r > 0) means the number of excited bosons. Then we can see the close
connection between the collective variables η and η∗(φ = 0) and the spectral parameter
pn(θ = 0). The fully parametrized SCF Hamiltonian HF∞: HF has a value on ûn but not on
ŝun. Therefore, we have to remove components not compatible with condition (ii) contained
in the HF∞: HF by assigning them to

∑
s∈Z

: ψns+αψ∗
ns+α : and the conserved quantity ?nr .

We call these conditions compatible conditions for the particle and collective modes. Then
we obtain the concept of the particle and collective motion by taking a value of z (= un) as
z = eiφ(t) and by adopting a special choice φ(t) = −ωct . It gives the collective motion as a
motion of the gauge of the fermions.

The above discussions bring about the following: evolution of the time variable t yields
the trajectory of the SCF Hamiltonian HpF∞(x, ∂̃x, ĝ). Then particle motion appears as time
evolution of the τ -function which corresponds to that of the parameters of solutions in the
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soliton equations and the collective one with only one normal mode as oscillation of the τ -
function through the common gauge factor z (= un). It should be noted that this oscillation
can be observed only through conserved quantities ?nr .

Standing on the above observation, further research must be made to obtain the collective
submanifold selected by the SCF Hamiltonian and also to obtain a more explicit relation
between the collective variable and spectral parameter. We will discuss them elsewhere with
the use of a simple model, for example, the famous Lipkin model.

5. Summary and concluding remarks

Subgroup orbits made up of a loop path exist infinitely in Grm and the τ -functional method
is recognized as an algebraic tool to classify them in Grm. To go beyond the perturbative
method with respect to collective variables, we have constructed the SCF (TDHF) theory on
the associative affine Kac–Moody algebra along the soliton theory using infinite-dimensional
fermions. Their operators have been introduced through a Laurent expansion of finite-
dimensional fermion operators with respect to degrees of freedom of the fermions related to
the mean-field potential. A finite-dimensional GrassmannianGrm is identified with an infinite
one which is affiliated with the manifold obtained by reduction to sun of gl∞ (reduced KP
hierarchy). In this sense an algebraic treatment of extracting subgroup orbits with z (|z| = 1)
from theGrm exactly forms the differential equation (Hirota’s bilinear equation) for sun (⊂ sln)
reduced KP hierarchy. The SCF theory on the F∞ results in a gauge theory of fermions
and collective motion due to quantal fluctuations of the self-consistent mean-field potential
is attributed to motion of the gauge of fermions in which the common gauge factor causes
interference among fermions. A concept of particle and collective motions is regarded as the
compatible condition for particle and collective modes. The collective variables may have a
close relation with a spectral parameter in soliton theory. These show that the SCF theory
in τ -functional space F∞ presents us with a new algebraic method on S1 for microscopic
understanding of fermion many-body systems.

Though state functions dependent on S1 have a crucial role for construction of the infinite-
dimensional fermions, an assumption on time-periodic collective motion is not necessarily
important. Prescribing the fermions to form pairs by absorbing a change of gauges, the SCF
Hamiltonian made up of only HF∞;HF is induced and non-dispersive behaviour of a path on
Grm can be described. Through the compatible condition for particle and collective modes,
the special choice of z makes the fermion gauge periodic. We have some expressions for
the pair operators of infinite-dimensional fermions in terms of Laurent spectra. This shows
the close connection between the expressions for the infinite-dimensional fermions by the
present theory and the finite ones by the SO(2n) and SO(2n+ 1) theories [23–26]. The above
prescription gives an explanation of questions of why the fermions prefer such pairs and why
infinite-dimensional Lie algebras work well in fermion many-body systems. Recently, another
infinite-dimensional algebraic approach related intimately to ours has been developed and the
exact solution for the pairing Hamiltonian obtained [27].

It must be stressed that the TDHF theory on F∞ describes dynamics on real fermion-
harmonic oscillators but that the soliton theory does so on complex fermion-harmonic
oscillators. This remark suggests that it is an important task to extend the TDHF theory
on real space ŝun to that on complex space ŝln. It will demand a deeper understanding of
the concept of quasi-particle energy and the boson one, namely the independent-particle and
mean-field potential, standing on an algebro-geometric viewpoint. This also proposes the
problem of the connection between this paper and the resonating mean-field theories [28]. It
is very interesting to study new motion on a complex Grassmannian in finite fermion many-
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body systems. We have assumed here only one circle. The TDHF equation on τm(x, ĝ),
however, should lead to multi-circles. It relates closely to problems of multi-dimensional
soliton theory.

We have made clear a unified aspect between the SCF method and τ -functional method
through the abstract fermion Fock space on S1. It means that algebro-geometric structures of
infinite-dimensional fermion many-body systems are also realizable in finite-dimensional ones.
Finally, we point out that to improve drawbacks in the perturbative SCF method it is useful to
find a way to construct infinite-dimensional boson variables xk from original group-parameters
of g ∈ U(n) [29].

To both the questions suggested by Tajiri in his acknowledgements, we cannot give a
satisfactory answer yet within the present framework, because both the two methods mentioned
below are a priori based on the fermion system from the outset. That is to say, the SCF method
describes a quasi-classical dynamics on the Grassmannian (the Slater determinantal orbit)
which is induced owing to the anticommutative property of fermions. On the other hand, the
τ -functional method also uses the fermions to explain the Grassmannian of solution space
which reflects the fermion-like behaviour of soliton solutions. Therefore, we should study
further why extraction of soliton equations out of classical wave equations brings out the
Grassmannian.
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